Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.307
1.
Physiol Res ; 73(2): 265-271, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710056

In this study, we investigated the serum vitamin D level in overweight individuals and its correlation with the incidence of nonalcoholic fatty liver disease (NAFLD). Between May 2020 and May 2021, the Department of Gastroenterology at the People's Hospital of Henan University of Traditional Chinese Medicine treated a total of 321 outpatients and inpatients with NAFLD, who were included in the NAFLD group, while 245 healthy age- and gender-matched individuals were included in the control group. All the data were collected for the relevant indices, including fasting plasma glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine transaminase, and 25-hydroxy vitamin D (25[OH]D. The patients with NAFLD were divided into the normal BMI group, the overweight group, and the obese group, according to the body mass index, and the 25(OH)D levels were compared between the different groups. Spearman's correlation analysis was performed to analyze the correlation between the serum 25(OH)D level and NAFLD. Regarding the serum 25 (OH)D level, it was lower in the NAFLD group than in the control group ([18.36 + 1.41] µg/L vs [22.33 + 2.59] µg/L, t = ?5.15, P<0.001), and was lower in the overweight group than in the normal group ([18.09 ± 5.81] µg/L vs [20.60 ± 4.16] µg/L, t = 0.26, P = 0.041). The serum 25(OH)D level was thus negatively correlated with the incidence of NAFLD in overweight individuals (r = 0.625, P<0.05). In conclusion, the level of 25(OH)D decreased in patients with NAFLD with increasing BMI (normal, overweight, obese). Keywords: Nonalcoholic fatty liver disease, Vitamin D.


Non-alcoholic Fatty Liver Disease , Overweight , Vitamin D , Vitamin D/analogs & derivatives , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Male , Female , Vitamin D/blood , Middle Aged , Overweight/blood , Overweight/epidemiology , Overweight/complications , Incidence , Adult , Body Mass Index , Case-Control Studies , China/epidemiology , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/diagnosis
2.
PLoS One ; 19(5): e0301774, 2024.
Article En | MEDLINE | ID: mdl-38722965

BACKGROUND AND AIMS: The cornerstone of clinical management of patients with nonalcoholic fatty liver disease (NAFLD) are lifestyle changes such as increasing physical activity (PA) aimed at improving cardiometabolic risk. To inform NAFLD prevention and treatment guidelines we aimed to: (i) quantify the role of PA on lowering the risk for NAFLD and fibrosis; (ii) characterize NAFLD and fibrosis association with PA in the context of socioeconomic environment. METHODS: A sample of 2648 participants from the NHANES 2003-2006 was selected to develop survey weighted multivariable logistic regression models for predicting NAFLD and significant fibrosis, diagnosed non-invasively via fatty liver index (FLI) and fibrosis-4 (FIB-4) index. The PA measures were obtained from a hip-worn accelerometer. RESULTS: The predictive model for NAFLD showed AUC of 0.687 and a decrease of 43% in NAFLD risk with moderate vigorous PA (MVPA) (OR = 0.569, p < 0.001). The predictive model for fibrosis had AUC of 0.755 and there was a 48% and a 70% decrease in significant fibrosis risk with MVPA (OR = 0.518, p = 0.022) and total log activity count (TLAC) (OR = 0.296, p = 0.017), respectively. Participants with NAFLD and NAFLD with fibrosis engage in declining PA. Despite having jobs with higher level of PA and participating in more moderate-to-vigorous PA, a larger proportion of Hispanics participants had NAFLD and significant fibrosis. CONCLUSIONS: These findings demonstrate the role of PA as a protective factor against the presence of NAFLD and significant fibrosis. Protective levels of PA in NAFLD differ by races.


Accelerometry , Exercise , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Social Class , Humans , Male , Female , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , Middle Aged , Adult , Liver Cirrhosis/epidemiology , Health Status Disparities , Nutrition Surveys
3.
Medicine (Baltimore) ; 103(19): e38008, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728519

Epidemiological and clinical studies have indicated a higher risk of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), implying a potentially shared genetic etiology, which is still less explored. Genetic links between T2DM and NAFLD were assessed using linkage disequilibrium score regression and pleiotropic analysis under composite null hypothesis. European GWAS data have identified shared genes, whereas SNP-level pleiotropic analysis under composite null hypothesis has explored pleiotropic loci. generalized gene-set analysis of GWAS data determines pleiotropic pathways and tissue enrichment using eQTL mapping to identify associated genes. Mendelian randomization analysis was used to investigate the causal relationship between NAFLD and T2DM. Linkage disequilibrium score regression analysis revealed a strong genetic correlation between T2DM and NAFLD, and identified 24 pleiotropic loci. These single-nucleotide polymorphisms are primarily involved in biosynthetic regulation, RNA biosynthesis, and pancreatic development. generalized gene-set analysis of GWAS data analysis revealed significant enrichment in multiple brain tissues. Gene mapping using these 3 methods led to the identification of numerous pleiotropic genes, with differences observed in liver and kidney tissues. These genes were mainly enriched in pancreas, brain, and liver tissues. The Mendelian randomization method indicated a significantly positive unidirectional causal relationship between T2DM and NAFLD. Our study identified a shared genetic structure between NAFLD and T2DM, providing new insights into the genetic pathogenesis and mechanisms of NAFLD and T2DM comorbidities.


Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Genetic Predisposition to Disease , Linkage Disequilibrium , Genetic Pleiotropy , Quantitative Trait Loci
4.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 346-353, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38733190

Objective: To explore the clinical features of fatty liver disease (FLD) from non-alcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MASLD), so as to elucidate its clinical application value under three renames. Methods: Patients who were hospitalized in the Department of Hepatology, Hospital of Traditional Chinese Medicine Affiliated to Xinjiang Medical University, from January 2020 to September 2023 and met the diagnosis of NAFLD, metabolic-associated fatty liver disease (MAFLD), or MASLD were selected as the research subjects. The clinical indicators differences among the three groups of patients were compared, mainly including general information (age, gender, body mass index, past history, etc.), serological indicators (liver and kidney function, blood lipids, blood sugar, coagulation function, etc.), non-invasive liver fibrosis indicators, fat attenuation parameters, etc. Measurement data were analyzed using ANOVA and the rank sum test, while count data were analyzed using the χ(2) test. Results: NAFLD, MAFLD, and MASLD prevalence rates among 536 cases were 64.0%, 93.7%, and 100%, respectively. 318 cases (59.3%) met the three fatty liver names at the same time among them. Male population proportions in NAFLD, MAFLD, and MASLD were 30.9%, 55.8%, and 53.9%, respectively. The alcohol consumption history proportion was 0, 36.7%, and 36.0%, respectively. The smoking history proportion was 7.0%, 31.9%, and 30.6%, respectively. The body mass index was (27.66 ± 3.97), (28.33 ± 3.63), and (27.90 ± 3.89) kg/m(2), respectively. The γ-glutamyltransferase levels were 26.6 (18.0, 47.0) U/L, 31.0 (20.0, 53.0) U/L, and 30.8 (19.8, 30.8) U/L, respectively. The high-density lipoprotein cholesterol levels were 1.07 (0.90, 1.23) mmol/L, 1.02 (0.86, 1.19) mmol/L, and 1.03 (0.87,1.21) mmol/L, respectively. Sequentially measured uric acid was (322.98 ± 84.51) µmol/L, (346.57 ± 89.49) µmol/L, and (344.89 ±89.67) µmol/L, respectively. Sequentially measured creatinine was 69.6 (62.9, 79.0) µmol/L, 73.0 (65.0, 83.5) µmol/L, and 73.0 (65.0, 83.0) µmol/L, respectively. The sequential analysis of obesity proportion was 74.3%, 81.7%, and 76.5%, respectively, with statistically significant differences (P<0.05). Conclusion: Compared with the NAFLD population, the MAFLD and MASLD populations were predominantly male, obese, and had a history of smoking and drinking. The levels of γ-glutamyltransferase, uric acid, and creatinine were slightly higher, while the levels of high-density lipoprotein cholesterol were lower. MASLD appeared in NAFLD and MAFLD on the basis of inheritance and progression, emphasizing once again the important role of metabolic factors in a fatty liver.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Body Mass Index , Fatty Liver/metabolism , Fatty Liver/blood , Male , Female , Middle Aged , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology
5.
BMC Gastroenterol ; 24(1): 160, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730369

PURPOSE: The link between dietary fiber intake and Non-alcoholic fatty liver disease (NAFLD) is under exploration, yielding inconsistent findings. Considering the limitations of previous research and the significance of dietary fiber in hepatic steatosis, this study investigates the association between dietary fiber intake and Controlled Attenuation Parameter (CAP) among 5935 participants from the National Health and Nutrition Examination Survey (NHANES). MATERIALS AND METHODS: Multivariable regression was used to evaluate the association between dietary fiber intake and CAP. Smoothed curve fitting and threshold effect analysis techniques were applied to illustrate non-linear relationships. RESULTS: After adjusting for other variables, a negative correlation emerged between dietary fiber intake and CAP. Subgroup analysis by gender and race/ethnicity revealed a sustained negative association between dietary fiber intake and CAP among females and Whites. Additionally, an inverted U-shaped relationship was observed between dietary fiber intake and CAP among women and other race, with inflection points at 13.80 g/day and 33.45 g/day, respectively. CONCLUSION: Our research indicates that in the majority of Americans, there is an inverse relationship between dietary fiber intake and hepatic steatosis. This relationship exhibits an inverted U-shaped curve in women and other race, with a threshold effect. The findings of this study hold potential significance for clinical nutrition interventions, personalized dietary guidance, and advancing research into the diet-disease mechanism relationship.


Dietary Fiber , Non-alcoholic Fatty Liver Disease , Nutrition Surveys , Humans , Dietary Fiber/administration & dosage , Female , Male , Non-alcoholic Fatty Liver Disease/epidemiology , Middle Aged , Adult , United States/epidemiology , Sex Factors
6.
Cardiovasc Diabetol ; 23(1): 167, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730426

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the proposed name change for non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate the association of cardiovascular disease risk with MASLD and NAFLD in patients who underwent clinically indicated coronary computed tomography angiography (CCTA). METHODS: This retrospective study included 2289 patients (60% men; mean age: 68 years) with no history of coronary artery disease who underwent CCTA. The steatotic liver was defined as a hepatic-to-spleen attenuation ratio of < 1.0 on CT just before CCTA. MASLD is defined as the presence of hepatic steatosis along with at least one of the five cardiometabolic risk factors. Adverse CCTA findings were defined as obstructive and/or high-risk plaques. Major adverse cardiac events (MACE) encompassed composite coronary events, including cardiovascular death, acute coronary syndrome, and late coronary revascularization. RESULTS: MASLD and NAFLD were identified in 415 (18%) and 368 (16%) patients, respectively. Adverse CCTA findings were observed in 40% and 38% of the patients with MASLD and with NAFLD, respectively. Adverse CCTA findings were significantly associated with MASLD (p = 0.007) but not NAFLD (p = 0.253). During a median follow-up of 4.4 years, 102 (4.4%) MACE were observed. MASLD was significantly associated with MACE (hazard ratio 1.82, 95% CI 1.18-2.83, p = 0.007), while its association with NAFLD was not significant (p = 0.070). By incorporating MASLD into a prediction model of MACE, including the risk score and adverse CCTA findings, global chi-squared values significantly increased from 87.0 to 94.1 (p = 0.008). CONCLUSIONS: Patients with MASLD are likely to have a higher risk of cardiovascular disease than those with NAFLD. Concurrent assessment of MASLD during CCTA improves the identification of patients at a higher risk of cardiovascular disease among those with clinically indicated CCTA.


Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Non-alcoholic Fatty Liver Disease , Predictive Value of Tests , Humans , Male , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Female , Retrospective Studies , Aged , Middle Aged , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Prognosis , Risk Assessment , Cardiometabolic Risk Factors , Risk Factors
7.
BMJ Open ; 14(5): e077576, 2024 May 01.
Article En | MEDLINE | ID: mdl-38692714

OBJECTIVES: There are no data regarding the prevalence of comorbidity (ie, additional conditions in reference to an index disease) and multimorbidity (ie, co-occurrence of multiple diseases in which no one holds priority) in patients with liver cirrhosis. We sought to determine the rate and differences between comorbidity and multimorbidity depending on the aetiology of cirrhosis. DESIGN: This is a subanalysis of the San MAtteo Complexity (SMAC) study. We have analysed demographic, clinical characteristics and rate of comorbidity/multimorbidity of patients with liver cirrhosis depending on the aetiology-alcoholic, infectious and non-alcoholic fatty liver disease (NAFLD). A multivariable analysis for factors associated with multimorbidity was fitted. SETTING: Single-centre, cross-sectional study conducted in a tertiary referral, academic, internal medicine ward in northern Italy (November 2017-November 2019). PARTICIPANTS: Data from 1433 patients previously enrolled in the SMAC study were assessed; only those with liver cirrhosis were eventually included. RESULTS: Of the 1433 patients, 172 (median age 79 years, IQR 67-84; 83 females) had liver cirrhosis. Patients with cirrhosis displayed higher median Cumulative Illness Rating Scale (CIRS) comorbidity (4, IQR 3-5; p=0.01) and severity (1.85, IQR 16.-2.0; p<0.001) indexes and lower educational level (103, 59.9%; p=0.003). Patients with alcohol cirrhosis were significantly younger (median 65 years, IQR 56-79) than patients with cirrhosis of other aetiologies (p<0.001) and more commonly males (25, 75.8%). Comorbidity was more prevalent in patients with alcohol cirrhosis (13, 39.4%) and multimorbidity was more prevalent in viral (64, 81.0%) and NAFLD (52, 86.7%) cirrhosis (p=0.015). In a multivariable model for factors associated with multimorbidity, a CIRS comorbidity index >3 (OR 2.81, 95% CI 1.14 to 6.93, p=0.024) and admission related to cirrhosis (OR 0.19, 95% CI 0.07 to 0.54, p=0.002) were the only significant associations. CONCLUSIONS: Comorbidity is more common in alcohol cirrhosis compared with other aetiologies in a hospital, internal medicine setting.


Comorbidity , Internal Medicine , Liver Cirrhosis , Multimorbidity , Humans , Male , Female , Cross-Sectional Studies , Liver Cirrhosis/epidemiology , Aged , Aged, 80 and over , Italy/epidemiology , Hospitalization/statistics & numerical data , Prevalence , Middle Aged , Non-alcoholic Fatty Liver Disease/epidemiology
8.
BMJ Open ; 14(5): e078933, 2024 May 06.
Article En | MEDLINE | ID: mdl-38719326

OBJECTIVES: To determine the association of non-alcoholic fatty liver disease (NAFLD) with the incidence of sarcopenia. DESIGN: Systematic review and meta-analysis of observational clinical studies. SETTING AND PARTICIPANTS: Adults with NAFLD. METHODS: Databases such as PubMed, Embase, Cochrane and Web of Science were searched for eligible studies published from the inception of each database up to 4 April 2023. All cross-sectional studies on the association between NAFLD and sarcopenia were included in this study. The quality of the included studies and risk of bias was assessed using the Agency for Healthcare Research and Quality checklist. STATA V.15.1 software was used for statistical analysis. RESULTS: Of the 1524 retrieved articles, 24 were included in this review, involving 88 609 participants. Our findings showed that the prevalence of sarcopenia was higher in the NAFLD group than in the control group (pooled OR 1.74, 95% CI 1.39 to 2.17). In a subgroup analysis by region, patients with NAFLD showed an increased risk of sarcopenia (pooled OR 1.97, 95% CI 1.54 to 2.51) in the Asian group, whereas patients with NAFLD had no statistically significant association with the risk of sarcopenia in the American and European groups, with a pooled OR of 1.31 (95% CI 0.71 to 2.40) for the American group and a pooled OR of 0.99 (95% CI 0.21 to 4.69) for the European group. Similar results were observed in the sensitivity analysis, and no evidence of publication bias was observed. CONCLUSIONS AND IMPLICATIONS: The current study indicated a significant positive correlation between NAFLD and sarcopenia, which may be affected by regional factors. This study provides the correlation basis for the relationship between NAFLD and sarcopenia and helps to find the quality strategy of sarcopenia targeting NAFLD.


Non-alcoholic Fatty Liver Disease , Sarcopenia , Sarcopenia/epidemiology , Sarcopenia/complications , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Risk Factors , Prevalence , Incidence
10.
Medicine (Baltimore) ; 103(18): e38007, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701269

BACKGROUND: This systematic review and meta-analysis aimed to report the evaluation of the prevalence and risk of nonalcoholic fatty liver disease (NAFLD) among adult psoriatic patients in a systematic review and meta-analysis. METHODS: A comprehensive search was conducted across 4 databases of PubMed, Scopus, Cochrane Library, and Web of Science to collect relevant studies until November 30, 2023, without any restrictions for finding observational studies. The comprehensive meta-analysis version 3.0 software was used to calculate effect sizes, showing the event rate (ER), odds ratio (OR), and a 95% confidence interval (CI) to evaluate NAFLD risk or prevalence in psoriatic patients and controls or psoriatic patients alone. The quality scoring was performed by 1 author based on the Newcastle-Ottawa Scale tool. Publication bias, meta-regression analysis, and sensitivity analyses were performed. Additionally, Trial Sequential Analysis (TSA) was performed using TSA software. RESULTS: A total of 581 records were identified among the databases and electronic sources. At last, 41 studies involving 607,781 individuals were included in the meta-analysis. The pooled ER of NAFLD among psoriatic patients was 29.5% (95%CI: 19.6%-41.7%) and I2 = 99.79%. The pooled OR of NAFLD in psoriatic patients compared to controls was 1.685 (95%CI: 1.382-2.055; P < .001) and I2 = 87.96%. CONCLUSIONS: The study found a significant link between psoriasis and NAFLD, with psoriatic patients having a higher chance of developing NAFLD compared to the controls. The study calls for regular NAFLD screening in psoriatic patients to prevent liver complications.


Non-alcoholic Fatty Liver Disease , Psoriasis , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Psoriasis/epidemiology , Psoriasis/complications , Prevalence , Adult , Risk Factors
11.
Front Endocrinol (Lausanne) ; 15: 1357664, 2024.
Article En | MEDLINE | ID: mdl-38689730

Background: Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, affecting 25-30% of the general population globally. The condition is even more prevalent in individuals with obesity and is frequently linked to the metabolic syndrome. Given the known associations between the metabolic syndrome and common mental health issues, it is likely that such a relationship also exists between NAFLD and mental health problems. However, studies in this field remain limited. Accordingly, the aim of this systematic review and meta-analysis was to explore the prevalence of one or more common mental health conditions (i.e., depression, anxiety, and/or stress) in adults with NAFLD. Methods: PubMed, EBSCOhost, ProQuest, Ovid, Web of Science, and Scopus were searched in order to identify studies reporting the prevalence of depression, anxiety, and/or stress among adults with NAFLD. A random-effects model was utilized to calculate the pooled prevalence and confidence intervals for depression, anxiety and stress. Results: In total, 31 studies were eligible for inclusion, involving 2,126,593 adults with NAFLD. Meta-analyses yielded a pooled prevalence of 26.3% (95% CI: 19.2 to 34) for depression, 37.2% (95% CI: 21.6 to 54.3%) for anxiety, and 51.4% (95% CI: 5.5 to 95.8%) for stress among adults with NAFLD. Conclusion: The present findings suggest a high prevalence of mental health morbidity among adults with NAFLD. Given the related public health impact, this finding should prompt further research to investigate such associations and elucidate potential associations between NAFLD and mental health morbidity, exploring potential shared underlying pathophysiologic mechanisms. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42021288934.


Anxiety , Depression , Non-alcoholic Fatty Liver Disease , Stress, Psychological , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/psychology , Depression/epidemiology , Anxiety/epidemiology , Stress, Psychological/epidemiology , Stress, Psychological/complications , Adult , Prevalence
12.
Environ Sci Technol ; 58(19): 8182-8193, 2024 May 14.
Article En | MEDLINE | ID: mdl-38691136

As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.


Non-alcoholic Fatty Liver Disease , Phthalic Acids , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Male , Adult , Female
13.
Sci Rep ; 14(1): 8589, 2024 04 13.
Article En | MEDLINE | ID: mdl-38615137

Early identification of high-risk metabolic dysfunction-associated steatohepatitis (MASH) can offer patients access to novel therapeutic options and potentially decrease the risk of progression to cirrhosis. This study aimed to develop an explainable machine learning model for high-risk MASH prediction and compare its performance with well-established biomarkers. Data were derived from the National Health and Nutrition Examination Surveys (NHANES) 2017-March 2020, which included a total of 5281 adults with valid elastography measurements. We used a FAST score ≥ 0.35, calculated using liver stiffness measurement and controlled attenuation parameter values and aspartate aminotransferase levels, to identify individuals with high-risk MASH. We developed an ensemble-based machine learning XGBoost model to detect high-risk MASH and explored the model's interpretability using an explainable artificial intelligence SHAP method. The prevalence of high-risk MASH was 6.9%. Our XGBoost model achieved a high level of sensitivity (0.82), specificity (0.91), accuracy (0.90), and AUC (0.95) for identifying high-risk MASH. Our model demonstrated a superior ability to predict high-risk MASH vs. FIB-4, APRI, BARD, and MASLD fibrosis scores (AUC of 0.95 vs. 0.50, 0.50, 0.49 and 0.50, respectively). To explain the high performance of our model, we found that the top 5 predictors of high-risk MASH were ALT, GGT, platelet count, waist circumference, and age. We used an explainable ML approach to develop a clinically applicable model that outperforms commonly used clinical risk indices and could increase the identification of high-risk MASH patients in resource-limited settings.


Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Adult , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Artificial Intelligence , Nutrition Surveys , Machine Learning
14.
Lipids Health Dis ; 23(1): 104, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38616253

BACKGROUND: The diagnosis and comprehension of nonalcoholic fatty liver disease (NAFLD), recently redefined as metabolic dysfunction-associated steatotic liver disease (MASLD) are gaining a better understanding. In this study, we examined the association between visceral fat area and skeletal muscle mass ratio (VSR) and the prevalence of MASLD in a Chinese population. METHODS: A cross-sectional study was conducted involving 10,916 individuals who underwent bioelectrical impedance analysis, along with anthropometric and biochemical measurements, from January 2022 to June 2023. According to the VSR distribution, sex-specific quartiles of VSR within the study population were defined. Linear trend tests were performed for the categorized VSR variables. Logistic regression models were performed to estimate the odds ratio and 95% confidence intervals between VSR distribution and MASLD prevalence stratified by sex. RESULTS: The prevalence of MASLD was 37.94% in the overall population (56.34% male), and it gradually increased with higher VSR levels in both genders (P < 0.001). Logistic regression analysis demonstrated a significant association between VSR and MASLD prevalence after adjusting for confounders. The odds ratio (95% confidence interval) for MASLD, comparing the lowest to the highest VSR quartile, was 3.159 (2.671, 3.736) for men and 2.230 (1.764, 2.819) for women (all P < 0.001). Restricted cubic splines also indicated significant non-linear relationships between VSR and MASLD prevalence. CONCLUSIONS: VSR is positively associated with the prevalence of MASLD in this Chinese population, with a notably higher risk for men as VSR increases compared to women.


Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Female , Humans , Male , Cross-Sectional Studies , Intra-Abdominal Fat , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Muscle, Skeletal , China/epidemiology
15.
Food Funct ; 15(9): 5050-5062, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656457

Background: The association of dairy product consumption with nonalcoholic fatty liver disease (NAFLD) and cirrhosis remains controversial. This study aimed to prospectively investigate the associations between the consumption of the different types of dairy products, genetic predisposition, and the risks of NAFLD and cirrhosis. Methods: This cohort study included 190 145 participants from the UK Biobank Study. The consumption of the different types of dairy products was assessed based on the Oxford WebQ at baseline and defined as the sum of milk, yogurt, and cheese. NAFLD and cirrhosis were evaluated using hospital inpatient records and death data in the UK Biobank. The weighted genetic risk score (GRS) for NAFLD and cirrhosis was constructed using 5 and 6 single-nucleotide variants (SNVs), respectively. Cox proportional hazards regression models were utilized to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between genetic factors and different types of dairy products with the incidence of NAFLD and cirrhosis. Results: During a median follow-up of 11.6 years, 1512 NAFLD and 556 cirrhosis cases were ascertained. After adjusting for several potential confounders, the HRs (95% CIs) (Q4 vs. Q1) of NAFLD were 0.86 (0.74, 0.995) for total dairy products, 0.96 (0.84, 1.09) for high-fat dairy products, 0.78 (0.67, 0.92) for low-fat dairy products, 0.86 (0.74, 0.99) for unfermented dairy products, and 0.79 (0.68, 0.91) for fermented dairy products. The multivariable-adjusted HRs (95% CIs) (Q4 vs. Q1) of cirrhosis were 0.75 (0.59, 0.96) for total dairy products, 0.97 (0.78, 1.19) for high-fat dairy products, 0.67 (0.51, 0.89) for low-fat dairy products, 0.75 (0.59, 0.96) for unfermented dairy products, and 0.71 (0.56, 0.90) for fermented dairy products. The associations of high-fat dairy products and fermented dairy products with NAFLD and cirrhosis were found to be nonlinear (P for nonlinear <0.05). No interaction was observed between dairy product consumption and NAFLD or cirrhosis genetic susceptibility. Conclusions: Higher consumption of dairy products, except for high-fat dairy, was correlated with lower risks of NAFLD and cirrhosis, regardless of their differences in genetic susceptibility.


Dairy Products , Genetic Predisposition to Disease , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Female , Male , Prospective Studies , Middle Aged , Liver Cirrhosis/epidemiology , Liver Cirrhosis/genetics , Adult , Risk Factors , Aged , Polymorphism, Single Nucleotide , United Kingdom/epidemiology
16.
Calcif Tissue Int ; 114(6): 592-602, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678512

Sarcopenia may increase non-alcoholic fatty liver disease (NAFLD) risk, but prevalence likely varies with different diagnostic criteria. This study examined the prevalence of sarcopenia and its defining components in adults with and without NAFLD and whether it varied by the method of muscle mass assessment [bioelectrical impedance (BIA) versus dual-energy X-ray absorptiometry (DXA)] and adjustment (height2 versus BMI). Adults (n = 7266) in the UK Biobank study (45-79 years) with and without NAFLD diagnosed by MRI, were included. Sarcopenia was defined by the 2018 European Working Group on Sarcopenia in Older People definition, with low appendicular skeletal muscle mass (ASM) assessed by BIA and DXA and adjusted for height2 or BMI. Overall, 21% of participants had NAFLD and the sex-specific prevalence of low muscle strength (3.6-7.2%) and sarcopenia (0.1-1.4%) did not differ by NAFLD status. However, NAFLD was associated with 74% (males) and 370% (females) higher prevalence of low ASM when adjusted for BMI but an 82% (males) to 89% (females) lower prevalence when adjusted for height2 (all P < 0.05). The prevalence of impaired physical function was 40% (males, P = 0.08) to 123% (females, P < 0.001) higher in NAFLD. In middle-aged and older adults, NAFLD was not associated with a higher prevalence of low muscle strength or sarcopenia but was associated with an increased risk of impaired physical function and low muscle mass when adjusted for BMI. These findings support the use of adiposity-based adjustments when assessing low muscle mass and the assessment of physical function in NAFLD.


Absorptiometry, Photon , Non-alcoholic Fatty Liver Disease , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/physiopathology , Male , Female , Middle Aged , United Kingdom/epidemiology , Aged , Prevalence , Absorptiometry, Photon/methods , Biological Specimen Banks , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle Strength/physiology , Electric Impedance , Body Mass Index , UK Biobank
17.
Sci Rep ; 14(1): 9753, 2024 04 29.
Article En | MEDLINE | ID: mdl-38679617

Genome-wide association studies have identified several genetic variants associated with nonalcoholic fatty liver disease. To emphasize metabolic abnormalities in fatty liver, metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been introduced; thus, we aimed to investigate single-nucleotide polymorphisms related to MAFLD and its subtypes. A genome-wide association study was performed to identify genetic factors related to MAFLD. We used a Korean population-based sample of 2282 subjects with MAFLD and a control group of 4669. We replicated the results in a validation sample which included 639 patients with MAFLD and 1578 controls. Additionally, we categorized participants into three groups, no MAFLD, metabolic dysfunction (MD)-MAFLD, and overweight/obese-MAFLD. After adjusting for age, sex, and principal component scores, rs738409 [risk allele G] and rs3810622 [risk allele T], located in the PNPLA3 gene, showed significant associations with MAFLD (P-values, discovery set = 1.60 × 10-15 and 4.84 × 10-10; odds ratios, 1.365 and 1.284, validation set = 1.39 × 10-4, and 7.15 × 10-4, odds ratios, 1.299 and 1.264, respectively). An additional SNP rs59148799 [risk allele G] located in the GATAD2A gene showed a significant association with MAFLD (P-values, discovery set = 2.08 × 10-8 and validation set = 0.034, odds ratios, 1.387 and 1.250). rs738409 was significantly associated with MAFLD subtypes ([overweight/obese-MAFLD; odds ratio (95% confidence interval), P-values, 1.515 (1.351-1.700), 1.43 × 10-12 and MD-MAFLD: 1.300 (1.191-1.416), 2.90 × 10-9]. There was a significant relationship between rs3810622 and overweight/obese-MAFLD and MD-MAFLD [odds ratios (95% confidence interval), P-values, 1.418 (1.258, 1.600), 1.21 × 10-8 and 1.225 (1.122, 1.340), 7.06 × 10-6, respectively]; the statistical significance remained in the validation set. PNPLA3 was significantly associated with MAFLD and MAFLD subtypes in the Korean population. These results indicate that genetic factors play an important role in the pathogenesis of MAFLD.


Acyltransferases , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipase , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Male , Female , Republic of Korea/epidemiology , Middle Aged , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Adult , Membrane Proteins/genetics , Obesity/genetics , Alleles , Aged , Case-Control Studies
18.
Sci Rep ; 14(1): 9376, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654043

This study aimed to develop and validate a nomogram model that includes clinical and laboratory indicators to predict the risk of metabolic-associated fatty liver disease (MAFLD) in young Chinese individuals. This study retrospectively analyzed a cohort of young population who underwent health examination from November 2018 to December 2021 at The Affiliated Hospital of Southwest Medical University in Luzhou City, Sichuan Province, China. We extracted the clinical and laboratory data of 43,040 subjects and randomized participants into the training and validation groups (7:3). Univariate logistic regression analysis, the least absolute shrinkage and selection operator regression, and multivariate logistic regression models identified significant variables independently associated with MAFLD. The predictive accuracy of the model was analyzed in the training and validation sets using area under the receiver operating characteristic (AUROC), calibration curves, and decision curve analysis. In this study, we identified nine predictors from 31 variables, including age, gender, body mass index, waist-to-hip ratio, alanine aminotransferase, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, uric acid, and smoking. The AUROC for the subjects in the training and validation groups was 0.874 and 0.875, respectively. The calibration curves show excellent accuracy of the nomogram. This nomogram which was based on demographic characteristics, lifestyle habits, anthropometrics, and laboratory data can visually and individually predict the risk of developing MAFLD. This nomogram is a quick and effective screening tool for assessing the risk of MAFLD in younger populations and identifying individuals at high risk of MAFLD, thereby contributing to the improvement of MAFLD management.


Nomograms , Humans , Female , Male , Adult , Retrospective Studies , Risk Factors , China/epidemiology , Young Adult , ROC Curve , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Risk Assessment/methods
19.
Sci Rep ; 14(1): 9068, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643245

Due to the comprehensive hepatitis B virus vaccination program in Taiwan since 1986, the development of antiviral therapy for chronic hepatitis B and chronic hepatitis C infection and covered by National health insurance. Besides, the increased prevalence of nonalcoholic fatty liver disease (NAFLD) and currently, approved therapy for NAFLD remain developing. The etiology of liver-related diseases such as cirrhosis and hepatocellular carcinoma required reinterpretation. This study aimed to analyze the incidence and outcome of hepatocellular carcinoma (HCC) due to viral (hepatitis B and hepatitis C) infection compared to that of nonviral etiology. We retrospectively analyzed patients with HCC from January 2011 to December 2020 from the cancer registry at our institution. Viral-related hepatitis was defined as hepatitis B surface antigen positivity or anti-hepatitis C virus (HCV) antibody positivity. A total of 2748 patients with HCC were enrolled, of which 2188 had viral-related HCC and 560 had nonviral-related HCC. In viral HCC group, the median age at diagnosis was significantly lower (65 years versus 71 years, p < 0.001), and the prevalence of early-stage HCC, including stage 0 and stage A Barcelona Clinic Liver Cancer, was significantly higher (52.9% versus 33.6%, p < 0.001). In nonviral HCC group, alcohol use was more common (39.9% versus 30.1%, p < 0.001), the prevalence of type 2 diabetes mellitus (T2DM) was higher (54.5% versus 35.1%, p < 0.001), and obesity was common (25.0% versus 20.5%, p = 0.026). The prevalence of nonviral HCC increased significantly from 19.2 to 19.3% and 23.0% in the last 10 years (p = 0.046). Overall survival was better in the viral HCC group (5.95 years versus 4.00 years, p < 0.001). In the early stage of HCC, overall survival was still better in the viral HCC group (p < 0.001). The prevalence of nonviral HCC has significantly increased in the last ten years. The overall survival was significantly lower in the nonviral HCC, perhaps because the rate of early HCC detection is lower in nonviral HCC and anti-viral therapy. To detect nonviral HCC early, we should evaluate liver fibrosis in high-risk groups (including people with obesity or T2DM with NAFLD/NASH and alcoholic liver disease) and regular follow-up for those with liver fibrosis, regardless of cirrhosis.


Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Hepatitis C , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Aged , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Retrospective Studies , Diabetes Mellitus, Type 2/complications , Prevalence , Hepatitis C/complications , Liver Cirrhosis/complications , Obesity/complications
20.
Sci Rep ; 14(1): 9537, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664485

Recent evidence shows the beneficial effects of Baltic Sea diet score (BSDS) and healthy Nordic diet index (HNDI) on chronic diseases, however, there is no evidence to investigate them on the risk of non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to investigate the associations between BSDS and HNDI with the risk of NAFLD. In this case-control study, 552 people in good health and 340 people with NAFLD over the age of 18 took part. The evaluation of BSDS and HNDI employed a validated 168-item semi-quantitative food frequency questionnaire (FFQ). Binary logistic regression was used to determine how OBS and NAFLD are related. The mean BSDS and HNDI were 16.00 ± 2.49 and 11.99 ± 2.61, respectively. The final model's confounder adjustment revealed that greater HNDI adherence scores gave protection against the occurrence of NAFLD (odds ratio [OR]: 0.42; 95% confidence interval [CI] 0.18-0.98; P for trend = 0.043). In addition, those with the highest BSDS scores had significantly lower risks of developing NAFLD compared to subjects with the lowest scores (OR = 0.48, 95% CI 0.32-0.89; p for trend = 0.003). Our findings showed that following a healthy Nordic diet can significantly prevent the risk of developing NAFLD, and suggest that the highly nutritious components of the Nordic diet are beneficial for the prevention of NAFLD.


Diet, Healthy , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Male , Female , Case-Control Studies , Middle Aged , Adult , Risk Factors , Diet/adverse effects , Aged , Odds Ratio
...